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1 Abstract

Speech recognition, the use of machines to translate speech into digitized text,
has grown incredibly efficient and accurate in recent years. Current techniques
allow us to decompose speech signals into feature vectors representative of win-
dowed frequency content and match these feature vectors (both individual and
in combination) to known patterns (e.g., phones, words, phrases). In this paper,
we explore the use of Mel-Frequency Cepstral Analysis for feature extraction.
Using the result Mel-Frequency Cepstral Coefficients (MFCCs), we explore tech-
niques for speech recognition such as basic linear correlation (for basic vowel
matching). We demonstrate a vowel prediction accuracy of approximately 87.5
percent using MFCCs and basic linear correlation (attributing a large portion
of the remaining error to an extremely limited training set). Finally, we explore
modes of speech recognition that could vastly increase accuracy and efficiency
(Artificial Neural Networks; Convolutional Neural Networks).
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2 Project Goals

The main goal of this project is to develop a unique system for speech processing
and recognition, that is both efficient and accurate. Modern speech recognition
engines have attained both these characteristics in the past several years, using
complex models such as deep neural networks to attain high accuracy.

The goal for our product is a lightweight and minimal system – we need to
maximize accuracy for a small state space of input options (geared towards the
client). The user should be able to be able to request something within a small
state-space of options and receive feedback accordingly with high accuracy. For
instance, if the client were using such a system in a car shop, requests such as
“purchase a Chevy Malibu A/C Compressor” should be parsed and carried out
(e.g., using Amazon). Hence, we must minimize run time so that the system
can be used without inconvenience (for instance, a response time of 10 seconds
would be non-viable).

The required steps for this project can be boiled down to the following
subcategories:

1. Process a speech signal in small windows, producing feature vectors rep-
resentative of the content in these frames of time

2. Develop a model to recognize and categorize these feature vectors

The first goal, speech processing, requires several individual steps to be
successful. These components can be summarized as follows:

1. Convert from analog (voice input) to digital (a speech signal)

2. Read in a WAV file and process it (derive sampling frequency, data points,
etc.)

3. Pre-process the signal (e.g., emphasize higher frequencies that are mini-
mized by human anatomy)

4. Window the signal (cut the signal into small and meaningful units of data)

5. Transform the data in the frequency domain to produce Mel-Cepstral
Coefficients (discussed later)

6. Lifter (similar to filtering) the MFCCs in order to cut out individual-based
content (e.g., pitch).

7. Normalize the resulting MFCCs (remove volume as a factor)

The second goal, developing and training a neural net, can be sub-categorized
as follows:
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1. Choose a model for use in this project (either a conventional system like
the Hidden Markov Model or a more complex system such as a Convolu-
tional Neural Network)

2. Train/build this neural network using MFCCs from downloaded and/or
produced training data

3. Test this network to ensure efficiency and accuracy

Similar to the workflow of this project, this paper will be split into two
chunks: one for speech processing and one for speech recognition via neural
network.

3 Concept Review

3.1 Speech as a Signal

3.1.1 Speech Production

Speech, in its most basic form, is an audible signal, generated via the vocal
chords, glottis, epiglottis, lungs, etc. A commonly accepted definition is as
follows: “Speech is produced by air-pressure waves emanating from the mouth
and the nostrils of a speaker,” [9]. These waves oscillate in unique patterns,
with each chunk of sound holding a different contextual and linguistic meaning.
Speech is informed by the human speech anatomy (Figure 1).

Figure 1: Anatomy of the mouth, [4]

These components are utilized in various ways to produce unique sounds.
Simple combinations of tongue placement in the mouth, lip shape, activation of

5



the vocal chords, etc. produce all of the sounds known to human language

Formants, the main resonant modes of the vocal tract, can be used to classify
a speech signal. With most sounds, the first two formants are considered more
relevant. Consider, for instance, the formant chart for vowels seen in Figure 2.

Figure 2: Vowel Formant Chart, [6]

Vowels (produced with an open vocal tract and relatively little audible fric-
tion) are characterized on an X and Y axis corresponding to formant 1 (F1) and
formant 2 (F2).

3.1.2 Model of Speech Production

As mentioned in the previous section, many different components contribute to
a single speech signal. The model for this process, however, is often a simple
source-filter model, with an excitation signal passing through a filter (represent-
ing all of the components previously discussed) to produce the speech signal (as
seen in Figure 3).

Figure 3: Source-filter model, [9]

One category of speech is voiced, meaning that the vocal chords are tensed,
vibrating to produce a quasi-periodic waveform. The excitation signal for this
type of sound can be viewed as an impulse train convolved with a glottal pulse
(Figure 4). The logical “opposite” of a voiced sound is an unvoiced sound. An
unvoiced sound is one in which the vocal chords of the speaker are not vibrating
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and the output is not periodic. Instead, the input for unvoiced sound is random
noise.

Figure 4: Excitation signal for voiced sound, [9]

The excitation signal in the source-filter model depicted prior incorporates
both voiced and unvoiced sound. We can view this duality as a “switch” in the
model, allowing for both voiced and unvoiced sounds as input.

Our complete model of speech production (Figure 5) must also include fac-
tors introduced by the speech production anatomy (discussed previously). For
instance, we must consider the influence of the vocal tract “filter” (represented
as V(jω)) and the influence of air pressure at the lips (R(jω)).

We also assume that both voiced and unvoiced sounds will be multiplied by
a gain (G) that represents volume (amplitude of signal). This will differentiate
between a shout and a whisper.

Figure 5: Complete model for speech, [9]

In modeling speech as a signal, we can wrap all of these factors (G(jω),
V(hω), R(jω)) into a single filter, H(jω). The resulting source-filter model (Fig-
ure 6) will be used for the duration of this paper.
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Figure 6: Source-filter model for speech, [9]

3.2 Speech Perception

The next relevant concept in developing a speech processing system is speech
perception. Because the human speech generation system is specifically built
to be “decoded” by another human, models for speech recognition (at least
this project model, given its purpose) should be informed by human speech
perception.

3.2.1 Auditory Anatomy

The human auditory system can be split into two sub-components: the the au-
ditory nervous system (i.e., the brain) and the the peripheral auditory system
(i.e., the ears). Sound signals enter the ear and are converted from acoustic
pressure signals to neural signals (transmitted via the auditory nerve to the
brain). These neural signals are then interpreted by the brain.

The ear is split into outer, middle and inner. Sound travels into the outer
ear and is funneled towards the tympanic membrane (i.e., the eardrum). Vibra-
tions of this membrane trigger parallel vibrations in the bones of the middle ear,
called ossicles. These tiny bones amplify the noise and pass the sound waves to
the inner ear, into the cochlea.

The anatomy of the cochlea is of most relevance in this project. The cochlea,
a fluid-filled hearing organ, contains the nerves for hearing. The cochlea accom-
plishes frequency-to-place transformation. In other words, higher frequencies
are received by the cochlear base, while lower frequencies are received by the
cochlear apex. This unique mapping, which parallels a filter bank (in that is
registers frequencies in select bands), has informed several different scales for
frequency, such as the Mel-frequency scale.

3.2.2 Mel-Frequency Scale

The scale favored in this paper will be the Mel-frequency scale, which is linear
below 1kHz and logarithmic above 1kHz. This system “represents the pitch
(perceived frequency) of a tone as a function of its acoustic frequency,” [9].
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The equation for transformation from Hertz to Mels is approximately cited by
Equation 1:

M(f) = 2595log10(1 +
f

700
) (1)

The conversion from Hertz to Mels can be seen in Figure 7.

Figure 7: Mel-Frequency Scale
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3.3 Audio Sampling

In this project, all speech signals are recorded in the form of a WAV file, or a
Waveform Audio File. It must be noted that this process does not capture all
of the audio information encapsulated in the recorded waveform. Instead, it col-
lects samples at a given sampling frequency to create a discrete representation
of the original signal – this signal can be encoded digitally and processed (see
Figure 8).

Figure 8: Sampling a waveform

The sampling frequency used throughout this project will typically be 44,100Hz.
This is a very common sampling frequency (it is used on audio CDs), as it sat-
isfied the Nyquist criterion for (i.e., allows for accurate sampling of) frequencies
up to approximately 20,000Hz, which pushes the limits of human hearing. Lower
sampling rates, such as 8,000Hz (the standard telephone sampling rate), are not
able to capture the nuances of human speech. For instance, “f” and “s” sounds
are blurred at a sampling rate of 8,000Hz. Clearly, for the purposes of this
project, a higher sampling rate is necessary for accurate prediction.

3.4 Feature extraction

The type of signal processing relevant to speech recognition is feature extraction.
Feature extraction allows us to isolate individual frames of sampled sound and
represent their content as vectors. These vectors can then be compared and
modified for further analysis.

The type of extraction accomplished in this project produces a feature vector
of Mel-Frequency Cepstral Coefficients (MFCCs) for each audio frame. MFCCs
are used in automated telephone systems to record spoken numbers (e.g., pre-
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scription numbers, telephone numbers). MFCCs have several benefits (motivat-
ing their use in this project). MFCCs:

1. Are relatively simple to calculate in comparison to other signal processing
techniques used for speech recognition.

2. Are calculated using the Mel-Frequency scale, meaning that the results
are perceptually motivated.

3. Produce a simple representation of a complicated window of audio data
(often only 12 coefficients for an entire 30ms chunk).

4. Minimize speaker-related factors such as gender and volume, allowing for
higher accuracy.

There are other feature vectors that may have been relevant in this project
(e.g., Linear Predictive Coding Coefficients), but MFCCs are the most well-
documented and offer the benefits mentioned above.

3.4.1 Pre-emphasis

Pre-emphasis is the first step to audio processing. During speech production,
some of the higher frequency content is suppressed (as a result of the human
anatomy). In order to restore this content, we must apply a High-Pass Finite
Impulse Response (FIR) filter to the signal in order to re-emphasize these higher
frequencies (see the transfer function in Equation 2).

H(jω) = 1− apreem
jω

(2)

The transfer function for this filter can be seen in Figure 9.

Figure 9: High-Pass FIR with a = .9
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3.4.2 Windowing

Follow audio sampling and pre-emphasis, we must window the audio informa-
tion. Speech signals are composed of many different sub-components/sounds,
all of which have different “fingerprints” for use in classification. Hence, the
signal must be broken up into windows for individual analysis. These windows,
along with their feature vectors, can then be analyzed on the whole using prob-
abilistic algorithms and neural networks (discussed later).

There are various forms of windowing, ranging from the simplest (rectangu-
lar windowing) to more complex functions.

The typical window length for speech recognition is approximately 20 to 30
milliseconds. Furthermore, we cannot simply cut-off one window and begin an-
other at the same point – so we must choose some overlap value (in order to
ensure no loss of information). The common offset is 10ms [9].

The entire process of windowing cuts the original signal into usable data as
seen in Figure 10.

Figure 10: Windowing an audio signal, [23]

The type of window used in this project is the Hamming window, which
is used in situations requiring higher frequency resolution [9]. The Hamming
window tapers off at the edges, allowing for minimal discontinuity. The equation
for the Hamming window is found in Equation 3.

w(n) = 0.54− 0.46cos(
2π(n− 1)

N − 1
) (3)
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An example Hamming window can be seen in Figure 11.

Figure 11: Hamming window

3.4.3 Fourier Transform

After pre-emphasizing the signal and windowing it, we then transfer into the
frequency domain, where we can see the frequency content of the signal. A pure
sinusoid oscillating at 100Hz, for instance, presents frequency content at 100Hz
and -100Hz in the frequency domain. A pseudo-periodic signal (like a vowel)
presents peaks at relevant oscillation frequencies.

Because the signal being processed is a discrete signal, the Fourier Transform
used must also be discrete. The formula for a discrete Fourier Transform is as
follows (Equation 4, 5) [21]:

X(ejω) =

∞∑
n=−∞

x[n]e−jωn (4)

x[n] =
1

2π

∫
2π

X(eJω)ejωndω (5)

Luckily, most coding platforms (including MATLAB and Python) have built
in FFT (Fast Fourier Transform) functions, so these formulae need not be input.

3.4.4 Filter-Bank Analysis

Following use of the DFT, the signal is now represented by its frequency content.
The next step in processing is to “adapt the frequency resolution to a perceptual
frequency scale which satisfies the properties of the human ears,” [19]. That is,

13



we must “re-organize” the frequency content based on a perceptually-motivated
scale, such as the Mel-frequency scale.

The strategy for this type of shift is filter-bank analysis, which consists of
“a set of bandpass filter whose bandwidths and spacings are roughly equal to
those of critical bands [here, based on the Mel-frequency scale] and whose range
of the center frequencies covers the most important frequencies for speech per-
ception,” [13]. These bandpass filters are generally triangular and placed at
relevant frequency bands. This set-up can be seen in Figure 12.

Figure 12: Typical Filter-Bank, [5]

In filter-bank analysis, the magnitude of the DFT of a window of speech
data is calculated. The resulting magnitude coefficients are then “binned” by
correlating them with each triangular filter [5]. In other words, the input to this
filter-bank is the power spectrum of the given frame. From this input, we are
able to produce a log-spectral-energy vector as the output. This type of vector
is computed via Equation 6. Here, we assume that Hm represents the transfer
function of the filter m. The filter-bank is composed of M of these filters (i.e.,
M filterbank channels), where M can range from 24 to 40 (by convention) [9].

E[m] =

K−1∑
k=1

log[|X[k]2Hm[k]] (6)

In more simple terms, the filterbank samples the spectrum of the speech frame
at Mel-frequency scale center frequencies [9].

3.4.5 Discrete Cosine Transform

The Discrete Cosine Transform (DCT), a similar function to the DFT, expresses
a discrete sequence of data points as a sum of cosine functions oscillating at
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different frequencies. The equation for DCT-II, the most common form of the
DCT (and the one used in this project) is shown in Equation 7 (where k = 0,
..., N-1):

Xk =

N−1∑
n=0

xncos[
π

N
(n+

1

2
)k] (7)

3.4.6 Cepstral Analysis

The major step in speech processing is the application of various functions to
the signal in order to cut out irrelevant information and extract relevant features.

The type of analysis used in this project is motivated by our source-filter
model of speech, in which the speech signal can be represented by Equation 8.

s[n] = e[n] ∗ h[n] (8)

As explained prior, the speech signal is assumed to be a convolution of an
excitation signal and a vocal tract sequence. As a result, the Fourier transform
of the speech signal is dictated by Equation 9 (using the duality principle of
the Fourier Transform), where E(j ω) is the transfer function of the excitation
signal and H(j ω) is the transfer function of the system:

S(jω) = E(jω)H(jω) (9)

Once in the frequency domain, we face the problem of separating the exci-
tation and system components. For a voice recognition system, we only want
to retain the system component (not the excitation component). Why? Pho-
netic content is dictated by the system (the combination of factors such as vocal
tract and radiation components). This is the content of interest in distinguish-
ing sounds. For instance, a variation in the radiation component (the lips) can
vary a given sound from an “f” to a “p.” Meanwhile, the original source signal
will contain information relevant only to pitch and speaker traits. These should
be ignored in speech recognition (for the highest accuracy).

How can we separate these components? The simplest answer is to take the
natural logarithm of the spectrum. This transformation produces Equation 10:

|log(S(jω))| = |log(E(jω))|+ |log(H(jω))| (10)

Now, transformation back into the time domain (via the inverse Fourier
Transform) yields two separate signal components: one relating to the initial
excitation and the other relating to the system. This yields Equation 11:

IDFT (|log(S(jω))|) = IDFT (|log(E(jω))|+ |log(H(jω))|) (11)

This unique transformation is called Cepstral Analysis, a process whose goal
is to “separate the speech into its source and system components without any
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a priori knowledge about source and/or system,” [2]. A cepstrum (the name
deriving from a combination of “spec” backwards with “trum”) is produced by
taking the inverse Fourier Transform (translating the signal from the frequency
domain into the cepstral domain) of the logarithm of a spectrum. The basic
transformation can be seen in Figure 8.

Figure 13: Block Diagram for Basic Cepstrum, [9]

The specific type of Cepstral Analysis used in this project is Mel-Cepstral
Analysis. The block diagram for this modified process can be seen in Figure
14. It can be noted that this type of anaysis is unique in its use of the Mel
filter-bank to generate a log-spectral-energy vector for each audio frame.

Figure 14: Block Diagram for Mel-Frequency Cepstral Analysis, [9]

The result of Mel-Frequency Cepstral Analysis produces a set of coefficients
called Mel-Frequency Cepstral Coefficients or MFCCs. These coefficients are
a representation of a speech signal defined as the real cepstrum of a windowed
signal derived from the FFT of that signal which is first subjected to a log-based
transform of the frequency axis (Mel-frequency scale) and then decorrelated us-
ing a Discrete Cosine Transform [9].
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3.4.7 Liftering

In the final steps of MFCC calculation, we entered the cepstral domain. The cep-
stral domain is very similar to the time domain, but differs by the processes per-
formed in cepstral analysis (making alterations in the frequency domain means
that reversal of the initial Fourier Transform will not actually return the signal
to the time domain). This domain is hence given an alternate name, the que-
frency domain (the word “frequency” scrambled).

The process of “filtering” in the quefrency domain is called liftering. The
process of liftering is informed by the calculations we use to enter the cepstral
domain in the first place. In separating the system and excitation components,
we produce two very separate components in the frequency domain – one at
lower “times” representing the vocal tract component and another a higher
“times” representing the original excitation.

In speech recognition, we desire the system component. Hence, to isolate
this component, we low-time lifter. This can be done by multiplying the whole
cepstrum by a rectangular window centered on lower quefrencies, or by de-
emphasizing the higher cepstral coefficients. A depiction of low-time liftering
can be seen in Figure 15.

Figure 15: Example of Low-Time Liftering, [2]

Following low-time liftering, only the system component remains in the cep-
stral representation. This removes the possibility of pitch information interfering
with the results.
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3.5 Speech Recognition

We have already reviewed the fundamental composition of speech and the steps
involved in feature extraction, but what comes next? How can we use these
features to make relevant conclusions about the incoming signal? This involved
two sub-steps:

1. The MFCCs for each frame must be mapped to a phone (a single sound)

2. These phones must be “strung together” in the most probable arrangement
to output the most probable input set of words

3.5.1 Hidden Markov Model

There are various methods for speech recognition that are considered to be
“conventional” – one such algorithm is the Hidden Markov Model, a tool for
modelling time series data. This type of model represents probability distri-
butions over sequences of observation, making it a relevant tool for pattern
recognition (and speech recognition) [11]. An HMM is just a Bayesian Network,
or a graphical model for representing conditional independencies between a set
of random variables. The Bayesian Network representation of an HMM can be
seen in Figure 16, where Si is a state and Yi is its corresponding observation.

Figure 16: Bayesian Network for Hidden Markov Model, [11]

A Hidden Markov Model is characterized the following qualities:

1. The process used to generate the current state is hidden from the observer

2. The current state St is independent of states before t-1

3. The hidden state variable is discrete

This type of model allows us to “string” together various states (in this
project, represented by a feature vector) probabilistically in order to produce
an observation about the output (a phone, word or phrase).

3.5.2 Artificial Neural Networks

In recent years, more complex systems for speech recognition have rivaled the
conventional Hidden Markov Model. Relevant to this type of mapping problem
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are Artificial Neural Networks (ANNs). As Kamble cites, ANNs “are nothing
but the crude electronic models based on neural structure of brain,” [16]. In
these systems, artificial neurons (or nodes) act as the basic processing unit (see
Figure 17). These types of systems are capable of being “trained” using training
data, and can developed incredibly accurate processing and predicting abilities
if given enough with which to work. These systems can then predict output
given input using the information they have “learned” in training.

Figure 17: Basic Model for Artificial Neuron, [16]

ANNs are relevant to speech recognition in that the patterns of speech (ob-
served through feature vectors) can be used as training data, in order to create
a system capable of identifying feature vectors and categorizing them to specific
phones.

The types of ANNs typically implemented in speech recogition are as follows
[16]:

1. Convolutional Neural Network: A CNN applies a series of filters to
a matrix of data to extract and learn features for use in classification.
This type of neural network is used for input-output problems, such as
image classification (where a matrix of pixels is the input and an image
classification is the output).

2. Recurrent Neural Network: An RNN is composed of connections that
resemble directed cycles, creating a feedback system that facilitates dy-
namic behavior over time. This “memory” can be used to process inde-
pendent sequences (such as phones in speech recognition).

3. Multilayer Perceptron: As opposed to RNNs, MLPs use a feedforward
system that allows the mapping of a set of inputs onto a set of outputs.

In this project, we will focus on CNNs because of their relative simplicity in
comparison to other ANNs, as well as their feature mapping abilities.
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3.5.3 Mapping MFCCs to Phones

Returning now to our initial goals, let us flesh out what must occur in order for
audio signals to be classified by entire words and phrases.

The goal of the first sub-step of processing is to map each set of MFCCs for
a single frame to a phonetic category. A sample case could be as follows:

1. The letter ’e’ is spoken and digitized

2. A set of MFCC vectors are extracted from this signal

3. Example mappings:

One of the MFCC vectors may map to the following phonetic proba-
bilities:

a) 70 percent chance: Voiced e

b) 20 percent change: Voiced @

c) Other negligible categorizations

Another the MFCC vectors, perhaps 5ms later, may map to the fol-
lowing phonetic probabilities:

a) 60 percent chance: Voiced e

b) 30 percent change: Voiced @

c) Other negligible categorizations

4. These mappings would be reviewed in order to group phonetically-related
frames and identify phones

Because the desired result for this step is simple input output based on a single
vector for each frame, there are many different options for processing.

A CNN, which is useful for feature mapping, can be used to address a chal-
lenge like this. Alternately, Hosom et. al use a Multilayer Perceptron (MLP)
which, as described prior, is a feedforward ANN model that maps sets of input
data onto a set of appropriate outputs [14]. This model is essentially a directed
map consisting of multiple layers of nodes (processing elements). This type of
model utilizes a type of supervised learning called back-propagation, which er-
ror corrects using a loss function and backwards traversal during each training
epoch. The placement of this algorithm in speech recognition can be seen in
Figure 18.

This type of analysis certainly fits with the challenge, but as Kamble points
out, the speech recognition rates are bested by alternate systems, such as Re-
current Neural Networks (RNNs) [16]. New models for faster, more accurate
and more efficient speech recognition are constantly being developed.
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Figure 18: Speech Recognition Process [14]

3.5.4 Matching Phonetic Groupings to Words

The matching of phonetic groupings to words is less emphasized in this paper,
but is nevertheless relevant. Such mappings can be approached similarly to the
prior problem, but the input is now sets of probable phones used to construct a
meaningful output. This type of challenge can be approached using the Hidden
Markov Model, as discussed in the concept review, which allows for the time
invariant combination of states to produce an observed output.

Neural networks could similarly be trained with phonetic combinations to
produce reasonable speech output. Neural networks can even be hybridized with
the Hidden Markov Model [8].
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4 Signal Processing

The first goal of this project involved taking in a signal as a .WAV file, win-
dowing this signal, performing cepstral analysis on these blocks of data and
post-processing the resulting feature vectors to return unique representations of
each window of time.

4.1 Relevant Resources

4.1.1 Exploring MATLAB’s Speech Processing Capabilities

Before diving into hand-coded MATLAB scripts and functions, it is important
to note that MATLAB has several useful signal/speech processing libraries/-
functions.

Of most relevance will be the following functions:

1. Spectrogram: Performs frequency analysis on the given signal to display
the frequency content as a spectrogram (a visual representation of a spec-
trum)

2. Filter: Used to apply basic filters to a given signal (including LPFs, HPFs,
etc.)

3. FFT: Performs the Fast Fourier Transform on the given data set

These functions can be used to confirm non-tangible statements made in
the Concept Review. For instance, observe the plots produced (using these
functions) to represent various unique phonemes in Figures 19, 20, and 21. We
can see in these figures the quasi-periodic time domain representation of the
voiced phoneme ’e’, showing clear bands at select frequencies, compared to the
random time domain representation of the unvoiced phoneme ’s’, with varied
bands of frequency over time.
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Figure 19: Single frame from the vowel ’e’ (time and frequency domain)

Figure 20: Single frame (extended) from the vowel ’e’ (time and frequency
domain)
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Figure 21: Single frame from an unvoiced ’s’ (time and frequency domain)

4.1.2 External Libraries & Similar Projects

Also of great use are similar projects and libraries produced in MATLAB and
Python, which offer varied approached to sub-functions of the signal processing.

One library of particular use is the VOICEBOX speech processing library,
written by Mike Brookes, Department of Electrical & Electronic Engineering,
Imperial College (API found on the Imperial College website) [10]. This library
offers useful functions such as:

1. Audio I/O functions (e.g., readwav & writewav; read and write WAV files)

2. Frequency conversion functions (e.g., frq2mel; convert from Hz to Mel)

3. Fourier transforms (e.g., rfft; computes real Fourier Transform efficiently)

4. Framing functions (e.g., enframe; frames the given signal)

5. Speech analysis functions (e.g., melbankx & melcepst; compute the Mel-
frequency filter bank for a signal, compute the Mel-Cepstral coefficients)

The PLP and RASTA (and MFCC, and inversion) in Matlab project, de-
veloped by Mike Shire from Columbia University, also offers another approach
to MFCCs (documentation found on the Columbia website) [22]. This library
comes equipped with the melfcc and invmelfcc functions for Mel-Cepstral and
inverse Mel-Cepstral analysis.
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A final project to mention, though not in MATLAB, is the Python speech
analysis package written by James Lyons (available on GitHub) [18].This project
holds most of its functionality in a single file, sigproc.py, which includes functions
like framesig (frame signal), powspec (power spectrum) and preemphasis.

4.2 Developing an MFCC system

4.2.1 Pre-emphasis

The process of pre-emphasis is relatively simple in MATLAB. Using the built-in
filter function, one can create a high-pass FIR filter to apply to the signal (see
basicdemo.m in the Appendix).

Figures 22 and 23 show a simple test signal (the letter e) before and after
pre-emphasis. The increased influence of higher frequency content is clear both
in the time and frequency domain.

Figure 22: Signal prior to pre-emphasis
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Figure 23: Signal post pre-emphasis

4.2.2 Windowing

A Hamming window was chosen for the windowing process in order to pre-
serve frequency resolution. Windowing was accomplished via a helper function
(frame, found in the Appendix ), which multiplies the signal by the Hamming
function (Equation 3) at intervals of about 50 percent the window size (by de-
fault). These result is a vector of frames, where each frame captures the sound
content within an isolated window.

Of great help in this function’s development was the enframe function from
the VOICEBOX library [10], which can be found in the Appendix. This func-
tion also utilizes Hamming windows, and uses similar tactics to window and
increment the signal.

The results of the framing function were tested via the framedemo (again,
found in the Appendix) script, which reads in a small portion of one of the
recorded vowels and windows it using the framing function. The result can be
seen in Figure 24.

26



Figure 24: Frame demo results

The influence of the Hamming window is clear – each individual frame (col-
ored differently) takes on the sinusoidal shape of the Hamming window, tapering
off towards the edges of the sample.

4.2.3 Fourier Transform

The next step, after windowing the signal, is to move from the time domain
and into the frequency domain using the Fourier Transform. Because the signal
is a discrete set of data, we must use the Discrete Fourier Transform, which is
supported by the fft function in MATLAB. It is also necessary to reshape the
data following transformation in order to remove mirrored information (resulting
from use of the fft function. These steps, along with extra “catch” conditions,
are encoded in the rfft function found in the Appendix. This function is derived
from the rfft function in the VOICEBOX Library [10].

The rfftdemo (also found in the Appendix ) tests this function by selecting a
frame from one of the recorded sample vowels and applying the function to the
frame. The original signal and resulting spectrum can be seen in Figure 25.
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Figure 25: RFFT Demo Results

There is noticeably more frequency variation in the female sample, with fre-
quency content centered at a slightly higher frequency. This is to be expected
given the higher frequency of the female voice. We can also observe two major
peaks in both spectra, corresponding the frequencies of oscillation present in the
pseudo-periodic vowel sound signals. These frequencies can also be observed in
the time domain, where the original signal appears to be roughly the summation
of two different sinusoids.

4.2.4 Filter-Bank Analysis

Filter-bank analysis was implemented using the melbankm.m function in the
Appendix, allowing for the concentration of frequency content at perceptually
relevant frequencies. This step represented a useful mid-point in that the output
log-spectral-energy vectors can be plotted in order to observe where the highest
concentration of energy resides for each sound vector. The filterbank function
in the Appendix was used to generate such plots for observation. These plots
can be seen in Figures 26, 27, and 28.
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Figure 26: Filterbank Results for Vowel \i\

Figure 27: Filterbank Results for Vowel \a\
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Figure 28: Filterbank Results for Vowel \u\

Each of these figures is marked with two red lines, representing the expected
frequency for high energy content (the first two formants of that particular
vowel). For the most part, these match up correctly, confirming the calculations
up to this point. The actual vs. expected high-energy center frequencies can be
viewed in Table 1 (noting that all frequencies have been converted to Hz; [3]).

Table 1: Filter-Bank Energy Concentration Results for Three Vowels
Expected F1 (Hz) Expected F2 (Hz) Actual F1 (Hz) Actual F2 (Hz)

\i\ 350 2400 200 2600
\a\ 570 870 500 900
\u\ 320 950 400 700

For the most part, these pairs seem to match up reasonably (attributing
error to speaker-related factors, pitch, etc.).

4.2.5 Mel-Frequency Cepstral Coefficients

All of the previous demos culminate in the development of the Mel-Frequency
Cepstral Coefficient function.

The first step in calculating the MFCCs is generating all of the parameters
necessary for calculations (see the MATLAB code below). This includes:
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1. The number of coefficients is set to 12 (coefficents above this number
typically have little to no relevance to the frequency content)

2. The number of filters in the filterbank is calculated from the sampling
frequency (where a higher sampling frequency will trigger a larger number
of filters)

3. The length of the window is also derived from the sampling frequency
(where a higher sampling rate triggers a window holding more samples)

4. The filter bank limits (high and low) are set (for the Mel-scale filter bank)

5. The increment for framing is set to approximately half the length of a
window

Note that many of these default parameters are informed by values generated
in the VOICEBOX library [10].

1 %% Set the initial variables
2 if nargin<2 fs=44100; end
3 nc=12; %% number of coefficients
4 %number of filters in filterbank
5 p=floor(3*log(fs));
6 %length of window
7 n=pow2(floor(log2(0.03*fs)));
8 %Filter bank limits
9 fh=0.5;

10 fl=0;
11 %Frame increment by sample
12 inc= floor(n/2); %hamming

Next the sample is framed using a hamming window (of the calculated
window length), incremented by the calculated increment of approximately 50
percent of the window length. These frames are pre-emphasized (emphasizing
higher frequencies). The rfft function is applied to the resulting frames.

1 %% Frame the sound
2 [z,tc]=enframe(s,hamming(n),inc);
3 %% Pre-emphasis
4 z = filter([ 1 -.95], 1, z);
5 %% Take the fourier transform
6 f=rfft(z.');

With the signal windowed and translated into the frequency domain, the
Mel-scale filter-bank (see this code in the Appendix ) is applied to each frame.
The output of the filter-bank is used to calculate the log-spectral-energy vectors
for each frame.
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1 %% Create mel Filter bank (centered on frequencies)
2 [m,a,b]=melbankm(p,n,fs,fl,fh);
3 % m = filterbank magnitudes
4 % a = filterbank center frequencies
5 % b = lowest FFT bin with non-zero coefficient
6

7 %% Calculate the log of the energies in each filter bank
8 pw=f(a:b,:).*conj(f(a:b,:));
9 pth=max(pw(:))*1E-20;

10 ath=sqrt(pth);
11 y=log(max(m*abs(f(a:b,:)),ath));

Finally, the Discrete Cosine Transform (see this code in the Appendix ) is
applied to the result in order to produce the Mel-Frequency Cepstral Coeffi-
cients. The results are fitted (zero-padded, if necessary), and low-liftered to
isolate formant-relevant information. Finally, the first coefficient is excluded
(as it represents the summation of energy across all of the coefficients and is not
necessary in following analysis).

1 %% Discrete Cosine Transform (last step)
2 % When plotted, look the same.
3 c = rdct(y).';
4

5 %% Fit the coefficients
6 nf=size(c,1);
7 nc=nc+1; %(extra added on at 0)
8 if p>nc
9 c(:,nc+1:end)=[];

10 elseif p<nc
11 c=[c zeros(nf,nc-p)];
12 end
13 c = (lifter(c', -.6))';
14

15 %% Exclude first coefficient
16 c(:,1)=[];

The result of this function is a matrix of cepstral coefficients, representing
a list of MFCC vectors (12 coefficients long) matching to each frame in the sig-
nal. These MFCCs have been low-liftered using the lifter function (which can
be found in the Appendix ) so that speaker-related factors are minimized. Note
that the liftering accomplished in this project is done by multiplying each coef-
ficient by ilift – hence, the later coefficients (e.g, i = 6, 7, 8), are de-emphasized
while the earlier coefficients are retained.

The resulting MFCCs can be viewed using the spectrogram function in MAT-
LAB. The result for a short audio clip (an \i\) can be seen in Figure 29. Each
vertical band is a single MFCC vector, representing a single frame in the signal.
The lighter colors correspond to larger coefficients while the darker colors cor-
respond to smaller (and less relevant) coefficients. The earlier coefficients (e.g.,
1-3) are consistently larger than the rest of the coefficients.
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Figure 29: MFCCs for short clip, \i\

5 Speech Recognition

5.1 External Libraries & Similar Projects

Of all of the possible methods for speech recognition using MFCCs, the Hidden
Markov Model is perhaps the most documented and tested. One such fleshed
out version is the HMM Speech Recognition in Matlab project, which is available
at the following site. This project offers viterbi path function, MFCC conversion
function and training/testing methods [15].

A similar project can be found in the MIT HMM Toolkit, authored by Kevin
Murphy. This project has all the basic HMM functions (e.g., viterbi path), as
well as multiple demos [20].

For the work with Neural Networks, we utilize TensorFlow, an open source
library for machine learning. Of particular use is the tflearn package, which
utilizes TensorFlow to implement a variety of neural nets with varied training
data. This package offers a fleshed-out API and examples package, including
examples for CNNs.
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5.2 Developing a Speech Recognition System

5.2.1 Recognition of Vowels via Correlation

The first step to developing a system to recognize phones from MFCCs is es-
tablishing the accuracy of basic MFCC-based prediction. As a demonstration
of the capabilities of MFCCs, let us observe the variation between the vowels
\i\ (the letter e), \u\ (an “oo” sound), and \a\ (an “ah” sound). Each of these
sounds has a distinct “fingerprint” in its MFCCs.

To observe these unique profiles, we observe 8 recordings of each of these
three vowels, representing varied pitch, volume and tone. The process for ex-
traction across an entire audio clip included the following steps:

1. Read in the audio and sampling rate using audioread

2. Pass this information to the melcepst function to produce a list of MFCC
vectors (each 12 coefficents long)

3. Pass these vectors to the avnormcep function which takes the average of
all of these coefficents and normalizes the result (see avnormcep in the
Appendix)

The resulting average MFCC vector for these audio clips can be seen in Fig-
ure 30 (MATLAB code found in Appendix: Plot Ceps). The varied maxima and
minima presenting (relatively) consistently for each vowel represent identifiers.
When all of these values are averaged and normalized across vowels, we can see
a clear distinction between each phone (Figure 31; code found in Appendix: Plot
Ave Ceps).
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Figure 30: MFCCs for 8 separate recordings of the sounds \i\, \u\ and \a\

Figure 31: Averaged MFCCs for phones \i\, \u\ and \a\
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Visually, one can easily distinguish one vowel from another. However, this is
not the goal of this project – no human processing should be necessary. Instead,
we can utilize correlation in order to determine the most likely match.

The correlation function used for this particular analysis is the MATLAB
corr function, which performs linear correlation analysis and returns a value
dictating the similarity of the two datasets (where 1 represents a perfect match
and -1 represents no relationship). The primary purpose of this type of analysis
is “to determine whether there is a relationship between two sets of variables,”
[1]. The equation for correlation is shown in Equation 12.
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Returning the tag (e.g., “e”, “a”) for the highest correlation can consistently
map a set of MFCCs to the correct vowel (N.B. the phoneme \i\ is mapped to
the sound “e”, the phoneme \u\ is mapped to the sound “o” and the phoneme
\a\ is mapped to the sound “a”). This is accomplished via the predictvowel
method (found in the Appendix ). The results, using the “training data” as in-
put, are promising. The returns of this function for each audio clip can be seen
in Table 2.

Table 2: Predict Vowel Test
Audio Clip \i\ \u\ \a\

1 “o” “o” “a”
2 “e” “o” “a”
3 “e” “o” “a”
4 “e” “o” “a”
5 “e” “o” “e”
6 “e” “a” “a”
7 “e” “o” “a”
8 “e” “o” “a”

The results of this testing show a prediction success rate of approximately
87.5 percent, with some misfires for each vowel. The mistakes in matching can
likely be attributed to the rudimentary nature of this prediction system – it
uses basic correlation (without contextual/temporal cues) to make its decision.
Likewise, each vowel is represented by eight 5-10 second clips, varied but spo-
ken consistently by the same people. Even attributing these mistakes to the
MFCC-matching system itself, it is still clear that MFCCs present a unique
enough “fingerprint” for different phones to build a speech recognition system.
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5.2.2 Recognition of All Sounds via CNN

Because the focus of this paper is not ANNs, we will not delve too deeply into
the inner mechanics of such machine learning techniques. Instead, we will ex-
amine a sample case relevant to the current task of pattern matching.

As mentioned in the concept review, Convolutional Neural Nets (CNNs) rep-
resent a reasonable option for pattern matching, as they represent an “input-
output” system-type, allowing for mapping between features vectors and speech
patterns.

We will review a CNN as a case study, utilizing MNIST training data (The
MNIST database is a large collection of labels matched to hand-written letters,
representing useful training data for different neural net models [17]). This (and
other) CNN is composed of a stack of convolutional modules that perform feature
extraction [7].

A huge part of neural nets is simply formatting the dataset. In the following
excerpt, we read in this labelled data and reshape it accordingly (here, we have
a 28 by 28 pixel, monochrome image). This translates to -1 for the batch-size
(for dynamic computation), 28x28 for the width and height of the pixel matrix
and 1 for the number of channels.

1 X, Y, testX, testY = mnist.load data(one hot=True)
2 X = X.reshape([-1, 28, 28, 1])
3 testX = testX.reshape([-1, 28, 28, 1])

Following reshaping, we must actuall built the neural model. We set-up the
following layers:

1. Layer to receive input

2. Convolutional Layer #1 (ReLu): Applies a saturating activation function

3. Pooling Layer 1: Reduce spatial size of representative and reduce overfit-
ting of data

4. Convolutional Layer #2 (ReLu)

5. Pooling Layer #2

6. Fully Connected Layer #1: Connects previous layers to the current layer
(with a drop-out function to randomly remove neurons and “force” differ-
ent paths in order to reduce over-fitting)

7. Fully Connected Layer #2 (Also with dropout)

8. Fully Connected Layer #3

9. Regression Layer using Adam algorithm for optimization
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1 network = input data(shape=[None, 28, 28, 1], name='input')
2

3 network = conv 2d(network, 32, 3, activation='relu', ...
regularizer="L2")

4

5 network = max pool 2d(network, 2)
6 network = local response normalization(network)
7

8 network = conv 2d(network, 64, 3, activation='relu', ...
regularizer="L2")

9

10 network = max pool 2d(network, 2)
11 network = local response normalization(network)
12

13 network = fully connected(network, 128, activation='tanh') ...
#connect layers

14 network = dropout(network, 0.8) #remove neurons and force new paths
15

16 network = fully connected(network, 256, activation='tanh')
17 network = dropout(network, 0.8)
18

19 network = fully connected(network, 10, activation='softmax')
20

21 network = regression(network, optimizer='adam', learning rate=0.01,
22 loss='categorical crossentropy', name='target')

Finally, we must fit and train this model. Using the tflearn DNN function,
we can construct the model from the architecture laid out. This can then be fit
to the data (the MNIST dataset) to create a functional CNN model.

1 # Deep neural net --> build model
2 model = tflearn.DNN(network, tensorboard verbose=0)
3

4 #Train the model, 1 epoch
5 model.fit({'input': X}, {'target': Y}, n epoch=1,
6 validation set=({'input': testX}, {'target': testY}),
7 snapshot step=100, show metric=True, ...

run id='convnet mnist')

The training steps of this function output model stats as follows, showing
the batch-size, accuracy, etc.:

1 ---------------------------------
2 Run id: convnet mnist
3 Log directory: /tmp/tflearn logs/
4 ---------------------------------
5 Training samples: 55000
6 Validation samples: 10000
7 --
8 Training Step: 100 | total loss: 0.22624 | time: 21.781s
9 | Adam | epoch: 001 | loss: 0.22624 - acc: 0.9222 | val loss: ...

0.17081 - val acc: 0.9487 -- iter: 06400/55000
10 --
11 Training Step: 200 | total loss: 0.24586 | time: 49.407s
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12 | Adam | epoch: 001 | loss: 0.24586 - acc: 0.9285 | val loss: ...
0.18801 - val acc: 0.9505 -- iter: 12800/55000

13 --

Clearly, this is by no means a comprehensive tutorial. A similar (if not
more-in-depth) walk-through can be found on TensorFlow’s site.

Noting the output of the training system, we can see the the training model
reaches a value accuracy of 95% by the second training batch. This early ac-
curacy is ideal in comparison to the 85% accuracy offered by the previously
proposed basic correlation model (noting, of course, that this model is using
a different type of training data). This is likely partially related to the larger
training size (which can be accommodated easily via this type of system). This
is also likely a result of the many layers of the neural architecture, which allow
for high-level feature extraction.

This same system for matching can be used with MFCCs. MFCCs matched
to expected phone labels can be used as a dataset similarly to the MNIST
dataset. Not only is this system functional, but it is arguably better than other
approaches. Han et. al, using the DCASE challenge dataset, show that Con-
vNet outperforms both of the baseline system with hand-crafted features and a
deep neural network approach by around 7% [12].

This type of neural net hybridized with a Hidden Markov Model has also
been explored by several groups. Abdel-Hamid et. al show that such a hy-
brid can achieve over 10% relative error reduction in the core TIMIT test sets
when comparing with a regular NN using the same number of hidden layers and
weights [8].

6 Conclusion

Clearly, all of speech processing and recognition was not addressed in this paper.
There are other ways to extract features from speech signals (such as LPCs),
and other ways to predict speech input (such as HMM-Gaussian hybrids). Still,
using the chosen tactics, we have demonstrated the general process of rudimen-
tary speech recognition, exploring various avenues for matching speech patterns
to phones, words and phrases.

6.1 Remaining Challenges

Moving forward, there remain several challenges with the techniques used in
this project. These include:

1. Interference with MFCCs: MFCCs have been known to be prone to
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interference. They can be expanded using add-on functions to filter out
bacgkground noise, but such methods have not been explored in this paper.

2. Variable length words: The temporal quality of speech (the difference
between a brief “Hello” and an extended “Hellooooo?”) has also not been
thoroughly considered. Ideally, variation in length should not vary the
output of the system.

3. Speed: For the most part, speed has been ignored in this paper. Still, as
mentioned in the introduction, this product requires speed in order to be
useful. Hence, this is a point of future testing and development.

4. Accuracy: The basic accuracy (using a small training set) of this system
has been demonstrated, but its accuracy with a large training set has only
been assumed to reach the accuracy standards. This would also require
the collection of additional samples and extensive testing.

6.2 Future Goals

In future extensions of this project, we hope to address the remaining challenges
presented above and develop high speed and accuracy from our system. This will
include application of the Convolutional Neural Network architecture present
prior. This will also require testing units and additional sample collection (as
the current training data is minimal). The end goal is a fast, accurate system
capable of identifying entire words and phrases (instead of just phones).
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7 Appendix

7.1 Basic Demo, basicdemo.m

1 function [signal] = basicdemo(name, conditions, window, shift)
2 % Basic demo which reads in a file, applies the given conditions
3 % and windows using the window and shift size given
4 % param: name File name
5 % param: conditions Array of conditions (e.g., 'p' for ...

pre-emphasis)
6 % param: window Window size
7 % param: shift Shift size (how far into the signal to shift ...

for display)
8 % Returns single channel from original signal
9 %

10 % Author: Maddie Briere, 2017
11

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13

14

15 % Fill in missing parameters
16 if nargin<3
17 window = .030;
18 end
19

20 if (nargin<4)
21 shift = 1000;
22 end
23

24 if shift≤0
25 shift = 0;
26 end
27

28 preemph = [1 1];
29 if any(conditions) == 'p'
30 preemph = [ 1 -.95];
31 end
32

33

34 % Read in file
35 [signal, fs] = audioread(name);
36

37 % Isolate first channel (fine for demo purposes)
38 signal = signal(:, 1);
39

40 % Apply pre-emphasis filter
41 emp = filter(preemph, 1, signal);
42

43 % Define sample size using window length
44 samplesize = fs*window;
45

46 % Isolate single frames (using simple rectangular windowing)
47 empframe = emp(shift:samplesize+shift);
48

49
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50 figure 1
51 subplot(2, 1, 1)
52 plot(empframe)
53 title('Original Signal')
54 xlabel('Sample')
55 ylabel('Normalized amplitude')
56

57 subplot(2,1,2)
58 spectrogram(empframe, 'yaxis')
59 title('Basic spectrogram')
60 xlabel('Sample')
61 ylabel('Frequency')

7.2 Frame, frame.m

1 function [ frames, times ] = frame(signal, fs, window, inc, none)
2 % Frames signal using Hamming window.
3 % Split signal up into (overlapping) frames: one per row.
4 % Input:
5 % signal: Vector of audio data
6 % fs: Sampling frequency
7 % window: Length of frame
8 % inc: Separation of frames
9 % none: Do not perform framing

10 % Output:
11 % frames: mxn matrix of frames
12 %
13 % Author: Maddie Briere, 2017
14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15

16 if nargin<3
17 window = .020*fs; %standard
18 end
19

20 if nargin<4
21 inc = .010*fs; %standard
22 end
23

24 limit = size(signal, 1)-window;
25

26 frames = [];
27 times = [];
28

29 samples = 1:1+window;
30 len = size(samples, 2);
31 w = .54 - .46.*cos((2.*pi.*(samples-1))./(len-1));
32

33

34 for i = 1:inc:limit
35 frame = signal(samples+i-1)';
36 if nargin≤4
37 frame = (frame.*w);
38 end
39 frames = [ frames frame' ];
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40 times = [times (samples+i-1)'];
41 end
42

43 frames = frames';
44 times = times'; % row = frame
45

46 end

7.3 Enframe, enframe.m

1 function [f,t,w]=enframe(x,win,inc,m)
2 %ENFRAME split signal up into (overlapping) frames: one per row. ...

[F,T]=(X,WIN,INC)
3 %
4 % See full usage in VOICEBOX package
5 % Copyright (C) Mike Brookes 1997-2014
6 % Version: $Id: enframe.m 6490 2015-08-05 12:47:13Z dmb $
7 %
8 % VOICEBOX is a MATLAB toolbox for speech processing.
9 % Home page: ...

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
10 %
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 % This program is free software; you can redistribute it ...

and/or modify
13 % it under the terms of the GNU General Public License as ...

published by
14 % the Free Software Foundation; either version 2 of the ...

License, or
15 % (at your option) any later version.
16 %
17 % This program is distributed in the hope that it will be useful,
18 % but WITHOUT ANY WARRANTY; without even the implied warranty of
19 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 % GNU General Public License for more details.
21 %
22 % You can obtain a copy of the GNU General Public License from
23 % http://www.gnu.org/copyleft/gpl.html or by writing to
24 % Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA ...

02139, USA.
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26

27 nx=length(x(:));
28 if nargin<2 | | isempty(win)
29 win=nx;
30 end
31 if nargin<4 | | isempty(m)
32 m='';
33 end
34 nwin=length(win);
35 if nwin == 1
36 lw = win;
37 w = ones(1,lw);
38 else
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39 lw = nwin;
40 w = win(:).';
41 end
42 if (nargin < 3) | | isempty(inc)
43 inc = lw;
44 end
45 nli=nx-lw+inc;
46 nf = max(fix(nli/inc),0); % number of full frames
47 na=nli-inc*nf+(nf==0)*(lw-inc); % number of samples left over
48 fx=nargin>3 && (any(m=='z') | | any(m=='r')) && na>0; % need an ...

extra row
49 f=zeros(nf+fx,lw);
50 indf= inc*(0:(nf-1)).';
51 inds = (1:lw);
52 if fx
53 f(1:nf,:) = x(indf(:,ones(1,lw))+inds(ones(nf,1),:));
54 if any(m=='r')
55 ix=1+mod(nf*inc:nf*inc+lw-1,2*nx);
56 f(nf+1,:)=x(ix+(ix>nx).*(2*nx+1-2*ix));
57 else
58 f(nf+1,1:nx-nf*inc)=x(1+nf*inc:nx);
59 end
60 nf=size(f,1);
61 else
62 f(:) = x(indf(:,ones(1,lw))+inds(ones(nf,1),:));
63 end
64 if (nwin > 1) % if we have a non-unity window
65 f = f .* w(ones(nf,1),:);
66 end
67 if nargout>1
68 if any(m=='E')
69 t0=sum((1:lw).*w.ˆ2)/sum(w.ˆ2);
70 elseif any(m=='A')
71 t0=sum((1:lw).*w)/sum(w);
72 else
73 t0=(1+lw)/2;
74 end
75 t=t0+inc*(0:(nf-1)).';
76 end

7.4 Frame Demo, framedemo.m

1 function [frames, hamframes] = framedemo(name)
2 % Show original, framed, and hamming framed
3 %
4 % Author: Maddie Briere, 2017
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6

7 [signal, fs] = audioread(name);
8 signal = signal(:, 1); %take first channel
9 signal = signal (1:6000);

10

11 window = .025*fs;
12 inc = .010*fs;
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13 [frames, times] = frame(signal, fs, window, inc, 1);
14 [hamframes, hamtimes] = frame(signal, fs, window, inc);
15

16 subplot(2, 1, 1);
17 plot(times', frames');
18 title('Framed signal')
19 xlabel('Sample')
20 ylabel('Amplitude')
21

22 subplot(2, 1, 2);
23 plot(hamtimes', hamframes');
24 title('Framed signal (Hamming)')
25 xlabel('Sample')
26 ylabel('Amplitude')
27

28 end

7.5 RFFT, rfft.m

1 function y=rfft(x)
2 % Edited by: Maddie Briere (2017)
3 % -> Alteration = hard-coded N (length) and D (dimension)
4 % -> Removed extra computing options
5 %
6 % RFFT Calculate the DFT of real data Y=(X,N,D)
7 % Data is truncated/padded to length N if specified.
8 % N even: (N+2)/2 points are returned with
9 % the first and last being real

10 % N odd: (N+1)/2 points are returned with the
11 % first being real
12 % In all cases fix(1+N/2) points are returned
13 % D is the dimension along which to do the DFT
14 %
15 % Copyright (C) Mike Brookes 1998
16 % Version: $Id: rfft.m 713 2011-10-16 14:45:43Z dmb $
17 %
18 % VOICEBOX is a MATLAB toolbox for speech processing.
19 % Home page: ...

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
20

21 s=size(x);
22 if prod(s)==1
23 y=x
24 else
25 %Set dimension for transform
26 d=find(s>1,1);
27

28 %Set length to size of sample
29 n=s(d);
30

31 %Fourier transform
32 y=fft(x,n,d);
33

34 %Reshape
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35 dimsize1 = prod(s(1:d-1));
36 dimsize2 = prod(s(d+1:end));
37 y=reshape(y, dimsize1, n, dimsize2);
38 s(d)=1+fix(n/2);
39 y(:,s(d)+1:end,:)=[];
40 y=reshape(y,s);
41 end

7.6 Filterbank, filterbank.m

1 function [c, tc]=filterbank(s,fs)
2 % FILTERBANK: Display results of filterbank analysis
3 % Authored by: Maddie Briere
4 % Resource: VOICEBOX is a MATLAB toolbox for speech processing.
5 % Home page: ...

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
6

7

8 %% Set the initial variables
9 if nargin<2 fs=44100; end

10 nc=12; %% number of coefficients
11

12 %number of filters in filterbank
13 p=floor(3*log(fs));
14

15 %length of fft
16 n=pow2(floor(log2(0.03*fs)));
17

18 %Filter bank limits
19 fh=0.5;
20 fl=0;
21

22 %Frame increment by sample
23 inc= floor(n/2); %hamming
24

25 %% Frame the sound
26 [z,tc]=enframe(s,hamming(n),inc);
27

28 %% Take the fourier transform
29 f=rfft(z.');
30

31 %% Create mel Filter bank (centered on frequencies)
32 [m,a,b,freqs]=melbankmx(p,n,fs,fl,fh, 'M')
33 % m = filterbank magnitudes
34 % a = filterbank center frequencies
35 % b = lowest FFT bin with non-zero coefficient
36

37 %% Calculate the log of the energies in each filter bank
38 pw=f(a:b,:).*conj(f(a:b,:));
39 pth=max(pw(:))*1E-20;
40 ath=sqrt(pth);
41 y=log(max(m*abs(f(a:b,:)),ath));
42

43 %% Create output or display
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44 if nargout<1
45 [nf,ny]=size(y);
46 imagesc(tc/fs,freqs, y);
47 axis('xy');
48 xlabel('Time (s)');
49 ylabel('Center Frequency (Mel)');
50 title('Mel-Frequency Filterbank Analysis -- Vowel e');
51 map = (0:63)'/63;
52 colormap([map map map]);
53 colorbar;
54 end

7.7 Mel Bank, melbankm.m

1 function [x,mc,mn,coefs, mx]=melbankmx(p,n,fs,fl,fh)
2 %MELBANKM determine matrix for a mel/erb/bark-spaced filterbank ...

[X,MN,MX]=(P,N,FS,FL,FH,W)
3 % Edited by: Maddie Briere, 2017
4 %
5 % Inputs:
6 % p number of filters in filterbank or the filter ...

spacing in k-mel/bark/erb [ceil(4.6*log10(fs))]
7 % n length of fft
8 % fs sample rate in Hz
9 % fl low end of the lowest filter as a fraction of fs ...

[default = 0]
10 % fh high end of highest filter as a fraction of fs ...

[default = 0.5]
11 %
12 % Copyright (C) Mike Brookes 1997-2009
13 % Version: $Id: melbankm.m 713 2011-10-16 14:45:43Z dmb $
14 %
15 % VOICEBOX is a MATLAB toolbox for speech processing.
16 % Home page: ...

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
17 %
18 % Note "FFT bin 0" assumes DC = bin 0 whereas "FFT bin 1" means ...

DC = bin 1
19

20

21 if nargin < 5
22 fh=0.5; % max freq is the nyquist
23 if nargin < 4
24 fl=0; % min freq is DC
25 end
26 end
27 sfact=2;
28

29

30 mflh=[fl fh]*fs;
31 mflh=frq2mel(mflh); % convert frequency limits into mel
32 melrng=mflh*(-1:2:1)'; % mel range
33 fn2=floor(n/2); % bin index of highest positive frequency ...

(Nyquist if n is even)
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34

35 if isempty(p)
36 p=ceil(4.6*log10(fs)); % default number of filters
37 end
38

39

40 if p<1
41 p=round(melrng/(p*1000))-1;
42 end
43 melinc=melrng/(p+1);
44

45 %
46 % Calculate the FFT bins corresponding to [filter#1-low ...

filter#1-mid filter#p-mid filter#p-high]
47 %
48

49 blim=mel2frq(mflh(1)+[0 1 p p+1]*melinc)*n/fs;
50 mc=mflh(1)+(1:p)*melinc; % mel centre frequencies
51 b1=floor(blim(1))+1; % lowest FFT bin 0 required ...

might be negative)
52 b4=min(fn2,ceil(blim(4))-1); % highest FFT bin 0 required
53 %
54 % now map all the useful FFT bins 0 to filter1 centres
55 %
56 pf=(frq2mel((b1:b4)*fs/n)-mflh(1))/melinc;
57

58 %
59 % remove any incorrect entries in pf due to rounding errors
60 %
61 if pf(1)<0
62 pf(1)=[];
63 b1=b1+1;
64 end
65

66 if pf(end)≥p+1
67 pf(end)=[];
68 b4=b4-1;
69 end
70

71 fp=floor(pf); % FFT bin 0 i contributes to ...
filters 1 fp(1+i-b1)+[0 1]

72 pm=pf-fp; % multiplier for upper filter
73 k2=find(fp>0,1); % FFT bin 1 k2+b1 is the first to contribute ...

to both upper and lower filters
74 k3=find(fp<p,1,'last'); % FFT bin 1 k3+b1 is the last to ...

contribute to both upper and lower filters
75 k4=numel(fp); % FFT bin 1 k4+b1 is the last to contribute to any ...

filters
76

77 if isempty(k2)
78 k2=k4+1;
79 end
80

81 if isempty(k3)
82 k3=0;
83 end
84
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85 r=[1+fp(1:k3) fp(k2:k4)]; % filter number 1
86 c=[1:k3 k2:k4]; % FFT bin 1 - b1
87 v=[pm(1:k3) 1-pm(k2:k4)];
88 mn=b1+1; % lowest fft bin 1
89 mx=b4+1; % highest fft bin 1
90

91 if b1<0
92 c=abs(c+b1-1)-b1+1; % convert negative frequencies into ...

positive
93 end
94

95 % end
96 v=0.5-0.46/1.08*cos(v*pi); % convert triangles to Hamming
97

98 % double all except the DC and Nyquist (if any) terms
99 msk=(c+mn>2) & (c+mn<n-fn2+2); % there is no Nyquist term if n ...

is odd
100 v(msk)=2*v(msk);
101

102 %
103 % sort out the output argument options
104 %
105 if nargout > 2
106 x=sparse(r,c,v);
107 if nargout == 4 % if exactly four output arguments, then
108 coefs = mc;
109 mc=mn; % delete mc output for legacy code ...

compatibility
110 mn=mx;
111 end
112 else
113 x=sparse(r,c+mn-1,v,p,1+fn2);
114 end
115

116 %
117 % plot results if no output arguments or g option given
118 %
119 if ¬nargout % plot idealized filters
120 ng=201; % 201 points
121 me=mflh(1)+(0:p+1)'*melinc;
122 fe=mel2frq(me); % defining frequencies
123 xg=mel2frq(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-
124 me(1:end-2),1,ng)+repmat(me(1:end-2),1,ng));
125

126 v=1-abs(linspace(-1,1,ng));
127 v=0.5-0.46/1.08*cos(v*pi); % convert triangles to Hamming
128

129 v=v*sfact; % multiply by 2 if double sided
130 v=repmat(v,p,1);
131

132 plot(xg',v','b');
133 set(gca,'xlim',[fe(1) fe(end)]);
134 xlabel(['Frequency (' xticksi 'Hz)']);
135 end
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7.8 Melcepst, melcepst.m

1 function [c, tc]=melcepst(s,fs)
2 % MELCEPST Calculate the mel cepstrum of a signal C=(S,FS)
3 % param: s Signal data
4 % param: fs Sampling rate
5 % Resources: VOICEBOX ...

(http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html)
6 %
7 % Author: Maddie Briere, 2017
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10

11 %% Set the initial variables
12 if nargin<2 fs=44100; end
13 nc=12; %% number of coefficients
14

15 %number of filters in filterbank
16 p=floor(3*log(fs));
17

18 %length of window
19 n=pow2(floor(log2(0.03*fs)));
20

21 %Filter bank limits
22 fh=0.5;
23 fl=0;
24

25 %Frame increment by sample
26 inc= floor(n/2); %hamming
27

28 %% Pre-emphasis
29 %s = filter([ 1 -.95], 1, s);
30

31 %% Frame the sound
32 [z,tc]=enframe(s,hamming(n),inc);
33 %% Pre-emphasis
34 z = filter([ 1 -.95], 1, z);
35 %% Take the fourier transform
36 f=rfft(z.');
37

38 %% Create mel Filter bank (centered on frequencies)
39 [m,a,b]=melbankm(p,n,fs,fl,fh);
40 % m = filterbank magnitudes
41 % a = filterbank center frequencies
42 % b = lowest FFT bin with non-zero coefficient
43

44 %% Calculate the log of the energies in each filter bank
45 pw=f(a:b,:).*conj(f(a:b,:));
46 pth=max(pw(:))*1E-20;
47 ath=sqrt(pth);
48 y=log(max(m*abs(f(a:b,:)),ath));
49

50 %% Discrete Cosine Transform (last step)
51 % When plotted, look the same.
52 c = rdct(y).';
53

50



54 %% Fit the coefficients
55 nf=size(c,1);
56 nc=nc+1; %(extra added on at 0)
57 if p>nc
58 c(:,nc+1:end)=[];
59 elseif p<nc
60 c=[c zeros(nf,nc-p)];
61 end
62 c = (lifter(c', -.6))';
63

64 %% Exclude first coefficient
65 c(:,1)=[];
66

67 %% Create output or display
68 if nargout<1
69 [nf,nc]=size(c);
70 ci=(1:nc);
71 imagesc(tc/fs,ci,c.');
72 axis('xy');
73 xlabel('Time (s)');
74 ylabel('Mel-cepstrum coefficient');
75 map = (0:63)'/63;
76 colormap([map map map]);
77 colorbar;
78 end

7.9 RDCT, rdct.m

1 function y=rdct(x,n,a,b)
2 %RDCT Discrete cosine transform of real data Y=(X,N,A,B)
3 % Data is truncated/padded to length N.
4 %
5 % This routine is equivalent to multiplying by the matrix
6 %
7 % Copyright (C) Mike Brookes 1998
8 % Version: $Id: rdct.m 713 2011-10-16 14:45:43Z dmb $
9 %

10 % VOICEBOX is a MATLAB toolbox for speech processing.
11 % Home page: ...

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
12 %
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 % This program is free software; you can redistribute it ...

and/or modify
15 % it under the terms of the GNU General Public License as ...

published by
16 % the Free Software Foundation; either version 2 of the ...

License, or
17 % (at your option) any later version.
18 %
19 % This program is distributed in the hope that it will be useful,
20 % but WITHOUT ANY WARRANTY; without even the implied warranty of
21 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 % GNU General Public License for more details.

51



23 %
24 % You can obtain a copy of the GNU General Public License from
25 % http://www.gnu.org/copyleft/gpl.html or by writing to
26 % Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA ...

02139, USA.
27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28

29 fl=size(x,1)==1;
30 if fl x=x(:); end
31 [m,k]=size(x);
32 if nargin<2 n=m;
33 end
34 if nargin<4 b=1;
35 if nargin<3 a=sqrt(2*n);
36 end
37 end
38 if n>m x=[x; zeros(n-m,k)];
39 elseif n<m x(n+1:m,:)=[];
40 end
41

42 x=[x(1:2:n,:); x(2*fix(n/2):-2:2,:)];
43 z=[sqrt(2) 2*exp((-0.5i*pi/n)*(1:n-1))].';
44 y=real(fft(x).*z(:,ones(1,k)))/a;
45 y(1,:)=y(1,:)*b;
46 if fl y=y.'; end

7.10 Lifter, lifter.m

1 function y = lifter(x, lift)
2 % y = lifter(x, lift)
3 % Author: Maddie Briere, 2017
4 %
5 % Apply lifter to matrix of cepstra (one per column)
6 % lift = exponent of x iˆn liftering
7 %
8 % Resource: Columbia Speech Analysis (dpwe@ee.columbia.edu)
9

10 if nargin < 2; lift = 0.6; end % liftering exponent
11 if nargin < 3; invs = 0; end % flag to undo liftering
12

13 [ncep, nfrm] = size(x);
14

15 if lift == 0
16 y = x;
17 else
18 liftwts = [1, ([1:(ncep-1)].ˆlift)];
19 y = diag(liftwts)*x;
20

21 end

7.11 Av Norm Cep, avnormcep.m
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1 function [average] = avnormcep( ceps )
2 % Take average cepstral coefficients for
3 % short excerpt of sound
4

5 [s1, s2] = size(ceps);
6 sum = zeros(1,s2);
7

8 for x = 1:s1
9 sum = sum + ceps(s1, :);

10 end
11

12 average = (sum/s1)';
13 average = average./max(average);
14

15 end

7.12 Plot Ceps, plotceps.m

1 ah1 = melcepst(audioread('ah1.wav'));
2 ah2 = melcepst(audioread('ah2.wav'));
3 ah3 = melcepst(audioread('ah3.wav'));
4 ah4 = melcepst(audioread('ah4.wav'));
5 ah5 = melcepst(audioread('ah5.wav'));
6 ah6 = melcepst(audioread('ah6.wav'));
7 ah7 = melcepst(audioread('ah7.wav'));
8 ah8 = melcepst(audioread('ah8.wav'));
9

10 o1 = melcepst(audioread('o1.wav'));
11 o2 = melcepst(audioread('o2.wav'));
12 o3 = melcepst(audioread('o3.wav'));
13 o4 = melcepst(audioread('o4.wav'));
14 o5 = melcepst(audioread('o5.wav'));
15 o6 = melcepst(audioread('o6.wav'));
16 o7 = melcepst(audioread('o7.wav'));
17 o8 = melcepst(audioread('o8.wav'));
18

19 e1 = melcepst(audioread('e1.wav'));
20 e2 = melcepst(audioread('e2.wav'));
21 e3 = melcepst(audioread('e3.wav'));
22 e4 = melcepst(audioread('e4.wav'));
23 e5 = melcepst(audioread('e5.wav'));
24 e6 = melcepst(audioread('e6.wav'));
25 e7 = melcepst(audioread('e7.wav'));
26 e8 = melcepst(audioread('e8.wav'));
27

28 ah1 = avnormcep(ah1);
29 ah2 = avnormcep(ah2);
30 ah3 = avnormcep(ah3);
31 ah4 = avnormcep(ah4);
32 ah5 = avnormcep(ah5);
33 ah6 = avnormcep(ah6);
34 ah7 = avnormcep(ah7);
35 ah8 = avnormcep(ah8);
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36

37 o1 = avnormcep(o1);
38 o2 = avnormcep(o2);
39 o3 = avnormcep(o3);
40 o4 = avnormcep(o4);
41 o5 = avnormcep(o5);
42 o6 = avnormcep(o6);
43 o7 = avnormcep(o7);
44 o8 = avnormcep(o8);
45

46 e1 = avnormcep(e1);
47 e2 = avnormcep(e2);
48 e3 = avnormcep(e3);
49 e4 = avnormcep(e4);
50 e5 = avnormcep(e5);
51 e6 = avnormcep(e6);
52 e7 = avnormcep(e7);
53 e8 = avnormcep(e8);
54

55 a = plot(ah1, 'r-');
56 hold on
57

58 b = plot(e1, 'b-');
59 hold on
60

61 c = plot(o1, 'g-');
62 hold on
63

64 legend('Vowel \a\', 'Vowel \i\', 'Vowel \u\')
65

66 plot(ah2, 'r-');
67 hold on
68

69 plot(ah3, 'r-');
70 hold on
71

72 plot(ah4, 'r-');
73 hold on
74

75 plot(ah5, 'r-');
76 hold on
77

78 plot(ah6, 'r-');
79 hold on
80

81 plot(ah7, 'r-');
82 hold on
83

84 plot(ah8, 'r-');
85 hold on
86

87 plot(e2, 'b-');
88 hold on
89

90 plot(e3, 'b-');
91 hold on
92
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93 plot(e4, 'b-');
94 hold on
95

96 plot(e5, 'b-');
97 hold on
98

99 plot(e6, 'b-');
100 hold on
101

102 plot(e7, 'b-');
103 hold on
104

105 plot(e8, 'b-');
106 hold on
107

108 plot(o2, 'g-');
109 hold on
110

111 plot(o3, 'g-');
112 hold on
113

114 plot(o4, 'g-');
115 hold on
116

117 plot(o5, 'g-');
118 hold on
119

120 plot(o6, 'g-');
121 hold on
122

123 plot(o7, 'g-');
124 hold on
125

126 plot(o8, 'g-');
127 hold on
128

129 title('Normalized, average cepstral coefficients');
130 xlabel('Cepstral coefficient');
131 ylabel('Amplitude');

7.13 Plot Ave Ceps, plotaveceps.m

1 ahave = zeros(1,12);
2 oave = zeros(1,12);
3 eave = zeros(1,12);
4 for x=1:8
5 ahave = ahave + ...

avnormcep(melcepst(audioread(sprintf('ah$\%$d.wav', x))));
6 oave = oave + ...

avnormcep(melcepst(audioread(sprintf('o$\%$d.wav', x))));
7 eave = eave + ...

avnormcep(melcepst(audioread(sprintf('e$\%$d.wav', x))));
8 end
9 ahave = ahave./8;
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10 oave = oave./8;
11 eave = eave./8;
12 ceps = 1:12;
13

14 hold on
15 a= plot(ceps, ahave, 'r-');
16 b= plot(ceps, eave, 'b-');
17 c= plot(ceps, oave, 'g-');
18 hold off
19

20 legend('Vowel \a\','Vowel \i\', 'Vowel \u\');
21 title('Normalized, average cepstral coefficients');
22 xlabel('Cepstral coefficient');
23 ylabel('Amplitude');

7.14 Predict Vowel, predictvowel.m

1 function [guess] = predictvowel(s, fs)
2 % Predict which vowel the input sound is.
3 ahave = zeros(12,1);
4 oave = zeros(12,1);
5 eave = zeros(12,1);
6 for x=1:8
7 a = avnormcep(melcepst(audioread(sprintf('ah%d.wav', x))));
8 ahave = ahave + a;
9

10 o = avnormcep(melcepst(audioread(sprintf('o%d.wav', x))));
11 oave = oave + o;
12

13 e = avnormcep(melcepst(audioread(sprintf('e%d.wav', x))));
14 eave = eave + e;
15 end
16 ahave = ahave./8;
17 oave = oave./8;
18 eave = eave./8;
19

20 save = avnormcep(melcepst(s, fs));
21

22 aguess = corr(ahave, save);
23 oguess = corr(oave, save);
24 eguess = corr(eave, save);
25

26 if aguess>oguess & aguess>eguess
27 guess = 'a';
28 end
29

30 if oguess>aguess & oguess>eguess
31 guess = 'o';
32 end
33

34 if eguess>aguess & eguess>oguess
35 guess = 'e';
36 end
37
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38 end
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